Gait analysis using gravitational acceleration measured by wearable sensors.
نویسندگان
چکیده
A novel method for measuring human gait posture using wearable sensor units is proposed. The sensor units consist of a tri-axial acceleration sensor and three gyro sensors aligned on three axes. The acceleration and angular velocity during walking were measured with seven sensor units worn on the abdomen and the lower limb segments (both thighs, shanks and feet). The three-dimensional positions of each joint are calculated from each segment length and joint angle. Joint angle can be estimated mechanically from the gravitational acceleration along the anterior axis of the segment. However, the acceleration data during walking includes three major components; translational acceleration, gravitational acceleration and external noise. Therefore, an optimization analysis was represented to separate only the gravitational acceleration from the acceleration data. Because the cyclic patterns of acceleration data can be found during constant walking, a FFT analysis was applied to obtain some characteristic frequencies in it. A pattern of gravitational acceleration was assumed using some parts of these characteristic frequencies. Every joint position was calculated from the pattern under the condition of physiological motion range of each joint. An optimized pattern of the gravitational acceleration was selected as a solution of an inverse problem. Gaits of three healthy volunteers were measured by walking for 20s on a flat floor. As a result, the acceleration data of every segment was measured simultaneously. The characteristic three-dimensional walking could be shown by the expression using a stick figure model. In addition, the trajectories of the knee joint in the horizontal plane could be checked by visual imaging on a PC. Therefore, this method provides important quantitive information for gait diagnosis.
منابع مشابه
Gait posture estimation using wearable acceleration and gyro sensors.
A method for gait analysis using wearable acceleration sensors and gyro sensors is proposed in this work. The volunteers wore sensor units that included a tri-axis acceleration sensor and three single axis gyro sensors. The angular velocity data measured by the gyro sensors were used to estimate the translational acceleration in the gait analysis. The translational acceleration was then subtrac...
متن کاملDrift Removal for Improving the Accuracy of Gait Parameters Using Wearable Sensor Systems
Accumulated signal noise will cause the integrated values to drift from the true value when measuring orientation angles of wearable sensors. This work proposes a novel method to reduce the effect of this drift to accurately measure human gait using wearable sensors. Firstly, an infinite impulse response (IIR) digital 4th order Butterworth filter was implemented to remove the noise from the raw...
متن کاملThree Dimensional Gait Analysis Using Wearable Acceleration and Gyro Sensors Based on Quaternion Calculations
This paper proposes a method for three dimensional gait analysis using wearable sensors and quaternion calculations. Seven sensor units consisting of a tri-axial acceleration and gyro sensors, were fixed to the lower limbs. The acceleration and angular velocity data of each sensor unit were measured during level walking. The initial orientations of the sensor units were estimated using accelera...
متن کاملGait-based Authentication using Trouser Front-Pocket Sensors
Recently, to reduce the inconvenience caused by authentication operations in portable terminals, various authentication methods based on behavior characteristics have been studied. Gait-based authentication is one of them. This authentication method identifies individuals based on walking motions measured by wearable sensors such as acceleration sensors. This study aims to improve the authentic...
متن کاملGait Recognition Using Wearable Motion Recording Sensors
This paper presents an alternative approach, where gait is collected by the sensors attached to the person’s body. Such wearable sensors record motion (e.g. acceleration) of the body parts during walking. The recorded motion signals are then investigated for person recognition purposes. We analyzed acceleration signals from the foot, hip, pocket and arm. Applying various methods, the best EER o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 42 3 شماره
صفحات -
تاریخ انتشار 2009